Why is Python used for web scraping?

Theo Vasilis
Theo Vasilis
Table of Contents

Is Python a good language for web scraping? We take you through the pros and cons and the best Python web scraping libraries.

There can be a certain beauty to simplicity when it comes to programming languages for web scraping. Python is a case in point. Its code is renowned for readability, making it easier to comprehend and write. It tends to involve fewer lines than other languages, such as JavaScript, and it also has fewer structural rules.

Without wishing to offend any Python masters reading this, Python is usually the beginner's choice for web scraping. If you know the language but you’re new to web scraping, you may be wondering whether it’s the best option for whatever cunning data extraction plan you’re concocting. Let’s swiftly go through some of the pros and cons of web scraping in Python and find out which tools you can use for extracting data from the web.

Web scraping in JavaScript vs Python - 2022
What is your choice for web scraping in 2022?

What are the pros of web scraping in Python?

A vast Python community

One great advantage of Python is its enormous community. You’ll get plenty of support from developers, and there are video and blog tutorials aplenty on the world wide web. Python is by far the most used language for web scraping, and there’s a huge amount of documentation and guidance on how to use it for web data extraction.

This chart from our blog post on the future of web scraping in 2023, based on data from GitHub, clearly demonstrates just how popular Python is compared to other languages.

The most popular languages for web scraping according to GitHub

Post-processing tools and visualization

The world of Python includes many post-processing and visualization tools, including but not limited to Pandas, Matplotlib, and Seaborn. Such tools are great for EDA (exploratory data analysis), data manipulation, and storing unstructured data in a structured format. That makes Python a great choice for adjusting scraped data to your needs.

➡️
Learn how to process the resulting data of a web scraper in Python using the Pandas library and how to visualize the processed data using Matplotlib.

Data pipelines in one language

One reason Python is such a popular language for data scientists is that Python’s packages make data pipelines so easy to create. This feature is no less useful for data acquired through web scraping. If you know Python, you can scrape something with libraries such as Requests and Beautiful Soup and then process it with Pandas and visualize it with Matplotlib.

Apify SDK for Python
Whether you are scraping with BeautifulSoup, Scrapy, Selenium, or Playwright, the Apify Python SDK helps you run your project in the cloud at any scale.

What are the cons of web scraping in Python?

Browser scripting and executing JavaScript code

JavaScript is the language of the web. By that, we mean that the vast majority of websites require JS to run in the end user’s web browser to function. Yes, it’s possible for libraries such as Selenium to control web browsers with Python, and some libraries can execute JavaScript code, but it’s not very convenient to write half of your script in Python and the other half in JavaScript. Many developers prefer to use a single language for all their web scraping needs.

Scaling scraping tasks

When trying to scale up your scraping operations and run multiple tasks in parallel, other languages allow you to do that much easier than Python. To do it with Python, you need a library like Scrapy that manages the multiple threads for you. Whereas, with Node.js, for example, the built-in event loop allows you to run multiple scraping tasks in parallel easily and with superior performance.

A case in point is Daltix and its decision to move its scrapers from Python to JavaScript. The structural limits of the Python library, Scrapy, and the difficulty of integrating with browsers led to the decision to migrate their scrapers to the open-source Node.js library, Crawlee.

Crawlee · Build reliable crawlers. Fast. | Crawlee

What are the best Python web scraping libraries?

The Python ecosystem contains some pretty powerful scraping tools. The six below are certainly among the most popular.

Requests

Requests is a library for Python that lets you easily send HTTP requests. You need to download the HTML with an HTTP client before you can parse it with something like Beautiful Soup or MechanicalSoup. With Requests, you don’t need to manually add query strings to your URLs or form-encode POST data.

Beautiful Soup

Beautiful Soup is a popular Python library for parsing HTML and easily navigating or modifying a DOM tree. Extracting HTML and XML elements from a web page requires only a few lines of code, making it ideal for tackling simple scraping tasks with speed.

➡️
Learn how to scrape websites using Python and its Beautiful Soup library. Follow the tutorial to analyze the target page and create a Python actor.

MechanicalSoup

MechanicalSoup is great for automating interaction with websites, clicking links, filling in forms, and storing cookies. It doesn’t, however, execute client-side JavaScript. That means it might not be the best bet for complex websites which need this to load paginated data.

Web scraping: Beautiful Soup or Scrapy?
Learn the differences between these Python scraping tools.
Many people who are just starting out with web scraping wonder what the differences are between Beautiful Soup and Scrapy. This post should shed some light on their different features and purposes and help you decide which one is better for your project.

Scrapy

Scrapy is among the most popular tools for extracting data from websites. Scrapy is a full-fledged web scraping framework that can use the previously mentioned libraries to extract data from web pages. It allows you to scrape multiple pages in parallel and export the data into a format of your choice.

Python & JavaScript alternatives to Scrapy
5 Scrapy alternatives for web scraping you need to try.

Selenium

This browser automation tool, primarily developed for web testing, is commonly used for web scraping. It uses the WebDriver protocol to control headless browsers, and its ability to render JavaScript on a web page makes it helpful for scraping dynamic websites (most modern websites use JS to load content dynamically).

That being said, given it was not designed for web scraping, it isn’t the most user-friendly option. If you’re new to web scraping, Beautiful Soup is much easier to set up and master. Another notable disadvantage of Selenium is that it isn’t ideal for large-scale extraction, as scraping large amounts of data with Selenium is a slow and inefficient process compared to other options out there.

Playwright vs. Selenium: which one to use for web scraping?
Let’s compare these two open-source libraries and their most useful web scraping features.

Playwright

Although it’s a fairly new library, Playwright is rapidly gaining popularity among developers due to its cross-browser and multi-language support, ease of use, and other cool modern features. While it’s primarily for controlling browsers rather than a web scraping tool, its versatility and auto-awaiting function make it a very popular choice for web scraping.

Ready to begin scraping?

Our blog on web scraping with Python is packed with information and shows you how to get started, so if you’ve got your heart set on Python, check it out.

Web Scraping with Python
Learn how to web scrape with Python. With code examples.
Explore some of the best Python libraries and frameworks available for web scraping and learn how to use them in your projects.


Great! Next, complete checkout for full access to Apify
Welcome back! You've successfully signed in
You've successfully subscribed to Apify
Success! Your account is fully activated, you now have access to all content
Success! Your billing info has been updated
Your billing was not updated